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ABSTRACT 
Human gait is one of the biometric characteristics that a person 
can be identified by. However, the wide applicability of gait 
recognition in real life is prevented by a great variety of 
conditions that affect the gait representation, such as different 
viewpoints. In this work, we present a novel view resistant 
approach to overcome the multi-view recognition challenge. The 
new loss function is proposed to increase the stability of the model 
to view changes. Besides this, the cross-view embedding of the 
gait features is made to enhance their discriminant ability which 
improves the recognition accuracy as well. The proposed 
approaches show a significant gain in quality and allow to achieve 
the state-of-the-art accuracy on the most common benchmark and 
outperform the most successful model on the majority of the 
views and on average. 
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• Computing methodologies→Object identification; 
Biometrics  
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1. INTRODUCTION 
Desire for security is one of the basic human aspirations: people 
tend to protect themselves, their houses and properties. Nobody 
wants the thief to get into their car or house or steal something 
from the bag. The development of video surveillance systems 
gives the possibility to collect a great amount of video data that 
can help to find the criminals and prevent committing new crimes. 
And modern computer vision methods allow to automatize many 
security problems, such as object detection and recognition. 
However, the most common recognition characteristic is the face 
of a person that can easily be hidden or faked (using makeup or 
mask). Other popular features such as fingerprints or iris require 
direct interaction with a person which sometimes is impossible. 
But there is one more biometric index, gait or walking manner, 
that does not have these disadvantages and, therefore, can be used 

for contactless automatic recognition. 

Due to physiological studies [6, 13], gait is a unique identifier 
which cannot be faked. Nevertheless, there is great variability of 
different conditions that can make gait look differently or change 
its computer representation. The first type of conditions contains 
shoes variation, being drunk or sick, or carrying something heavy. 
The second one includes different lightening, clothes that can 
change human's figure and hide some body parts, and view 
variation. The view variation is probably the most complex 
challenge in gait recognition problem. It is obvious for human's 
eye that there is the same person captured under different angles, 
but computer gets two absolutely different video sequences and it 
is complicated to train the model stable to view changes. 

Despite the fact that modern deep learning methods show 
significant results in most of computer vision problems, gait 
recognition challenge is still not subdued. Although being a video 
classification problem, it is close to action recognition, the 
difference between two gaits is much smaller than between two 
actions and most of the methods are not transferable from one 
problem to another.  

Most of gait recognition methods tend to use specific features 
such as silhouette mask [2, 9] or human pose defined by the set of 
human body key points. Such approaches achieve quite high 
recognition accuracy, however, to analyze the motion thoroughly 
one need to know not only the situation in each distinct frame but 
the information about the dynamics of the body [8]. One of the 
ways to get such information is considering optical flow between 
consecutive frames. The approach [17] based on this idea shows 
really good quality, but similarly to the others, it suffers from lack 
of view stability. 

In this work, we propose a novel view-invariant approach to gait 
recognition. Being based on one of the state-of-the-art methods 
[17], it aims to overcome the problem of multiple viewing angles 
and train the gait features that do not depend on the view. We are 
the first to use a new loss (View Loss) that can complement 
conventional loss function and work as a regularizer. Besides this, 
we propose the cross-view triplet probabilistic embedding (CV 
TPE) that can be applied as post-processing to get rid of any view 
dependence. Being applied to [17] each of these two approaches 
improves the recognition quality, and their union shows that they 
can complement each other and outperform the state-of-the-art 
models on the gait recognition benchmark. 

2. RELATED WORK 
Gait recognition methods have been developing actively recently. 
Although it is a computer vision problem where the neural 
networks show excellent results, it is very specific and non-deep 
methods still compete with the deep ones. The most common 
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features used for recognition are silhouettes and various 
aggregations of silhouette sequences [2, 9]. Gait energy images 
(GEI) [9] are the most popular basic gait descriptors and a great 
variety of methods are based on them. In [1, 11] different GEI 
embeddings are proposed based on linear discriminant analysis. 
The investigations show that the single-view recognition is much 
easier than the cross-view one, thus, many authors suggest that 
gait features obtained from different angles should be embedded 
into one common subspace or transformed into each other. 
Several works [12, 20] propose to transform the descriptors to a 
common view. While [12] considers linear transformation, [20] is 
based on modern popular generative neural network approaches: 
autoencoders and adversarial networks. These generative models 
are used to “turn” gait images to the same view and solve a single-
view problem. However, the best results until recent time were 
achieved by neural methods not making any view transformations 
but computing deep gait representations and considering their 
similarity. Different Siamese architectures with several streams 
are investigated in [18, 19, 22] and the ways of stream fusion, 
feature aggregation and similarity measuring are compared. The 
first approach able to outperform [19] being state-of-the-art for 
several years is [5] considering the sets of silhouettes that are 
invariant to permutation and allow to mix the frames obtained 
under different views. The authors consider various aggregation 
functions and their combination (Set Pooling) to get set-level 
features from frame-level ones and also present Horizontal 
Pyramid Mapping which splits the neural feature maps into the 
strips of different scales in order to aggregate multi-scale 
information. 

Although the silhouettes and GEIs are the most popular gait 
descriptors and allow to achieve high identification results, this 
data is not the only one that can be used for gait recognition. 
Another source of information about gait is optical flow (OF). 
Reflecting the movements of the points between the frames, OF 
based approaches make the motion of greater interest than 
appearance. The idea of considering OF is proposed in [15] for 
action recognition and after its success, it was applied to gait in [4, 
16]. In [17] this approach is united with pose-based method: the 
OF is considered in different parts of the body which allows to 
pay more attention to some body parts than on the others. This 
approach achieved state-of-the-art quality and outperformed [19] 
for several angles. And it is the method we base our model on. 

3. PROPOSED METHOD 
3.1 Baseline 
Let us firstly describe some details of the baseline approach [17]. 
The pipeline of this method is as follows: 
1. Optical flow estimation between consecutive frames; 
2. Pose estimation in each frame; 
3. Neural features extraction; 
4. Feature aggregation and classification. 

The first two steps are made independently using the existing 
methods of optical flow [7] and pose [3] estimation. Having 
executed both preprocessing steps the patches of OF are cropped 
from several parts of the body. The authors consider five areas: 
full body, upper and lower parts of the body and two patches 
around the feet. Having found the set of body key points the 
bounding boxes are calculated for these areas and OF patches are 
cropped to be fed into the network.  

The third step requires preliminary neural network training which 
is one of the most challenging parts of the problem.  The network 

is trained for classification task (by LogLoss minimization), to 
predict the probability of the input patch to belong to one of the 
subjects from the training set. WideResNet architecture is chosen 
since it is not very deep but as residual network shows good 
training ability. This architecture has 256 neural units on the last 
hidden layer which is the dimension of future neural 
representations. 

When the network is trained it is used as a feature extractor. The 
hidden representations are calculated for each patch in each OF 
map, and then the obtained descriptors are averaged over time and 
concatenated over the body parts. Such a procedure allows to get 
one high-dimensional descriptor for one video that can further be 
normalized and classified by Nearest Neighbor method. PCA 
decomposition can be applied to the descriptors prior to 
aggregation to get rid of extra noise and accelerate the 
classification.  

In this work, we propose two important modifications of this 
pipeline. The first one concerns the training process: having the 
same architecture we add an auxiliary loss function called View 
Loss working as a regularizer to increase view stability. The 
second modification is made on the last step: instead of direct 
feature aggregation and classification, we train a cross-view 
embedding which improves the discriminant ability of the 
descriptors. The scheme of the baseline algorithm and the 
modifications are shown in Fig. 1 and the details are discussed in 
the following sections. 

3.2 View Loss 
Aiming to recognize the subject independent of viewing angle, we 
need the trained features of the same subject to be similar for 
different views. Thus, we propose to consider special view-
resistant loss function while neural network training. 

The network used for feature extraction is trained for 
classification task to predict the probability distribution over the 
set of training subjects. However, additionally to classical 
LogLoss, we propose an auxiliary loss called “view loss” to 
regularize the model and decrease the overfitting. It aims to make 
the hidden representations of videos of the same subject close to 
each other even if they have different viewing angles. Thus, it 
penalizes for the big difference between the representations of 
videos with one certain view and averaged representation of 
videos with different views.  

In details, let i be an Id of a subject, α be an angle. Let us consider 
two data batches: the first one {bi,α} consists of the data for 
subject i with view α, and the second one {bi} consists of data for 
the same subject i but captured under any angle (angles in the 
batch can be different). Let di,α  and di be the average of last 
hidden layer outputs of  batches bi,α  and bi , respectively. 

Since we use the hidden representations as the gait features and 
find the nearest one in the database, we aim to make the features 
of the same subject closer to each other regardless of the view. 
Hence, they should be close to the mean value over different 
views, and we need to bring di,α and di closer. To achieve it, we 
consider such pairs of batches and the following loss function for 
them: 

𝐿𝑟𝑒𝑔 = 𝜆 𝐿𝑣𝑖𝑒𝑤  + 𝐿𝑐𝑙𝑓, 

where 𝐿𝑣𝑖𝑒𝑤 =  �𝑑𝑖,𝛼 − 𝑑𝑖�
2 is the described view loss and Lclf  = 

LogLoss(bi,α) + LogLoss(bi) is cross-entropy for classification 
applied to both batches. Thus, we add the view term to classical 
loss function which can be considered as the regularization to 



prevent view memorizing. Since we need to sample such batches 
in a special way (the subject Id is fixed inside the batch and the 
angles are sometimes fixed, as well), we cannot train the network 
only on such batches. So, we alternate the conventional 
optimization steps makes “view optimization” once in k steps. 
The whole algorithm for one epoch appears to be as follows: 
for j in range (epoch size) do 

Sample random batch; 
Make optimization step: 𝐿𝑐𝑙𝑓  

→𝑚𝑖𝑛 
if j mod k = 0 then 
Sample random subject i, random view α; 

Sample batches {bi,α}, {bi}; 
Make regularized optimization step: 𝐿𝑟𝑒𝑔  

→𝑚𝑖𝑛 
       end if 
end for 
Such regularized optimization steps obviously increase the 
unregularized loss but prevent the fall into the local minimum. 
Being applied to the network that has already stopped being 
optimized, the described optimization process can help to leave 
current minimum if it is not optimal and then descent to “real” 
global minimum. 

 

Figure 1. The pipeline of the algorithm. The green boxes (view loss and CV TPE) correspond to our novelties. 

3.3 Cross-View Triplet Probabilistic 
Embedding 
Although the training process described in Section 3.2 aims to get 
rid of view dependence, we propose one more approach that can 
be applied to the neural features to increase view resistance more. 
This approach is based on Triplet Probabilistic Embeddings (TPE) 
[14] that was proposed for verification improvement. Despite the 
fact that our main goal is classification, we, however, apply this 
method to the neural features obtained from the network. 

TPE aims to find an embedding (projection matrix) to make 
features of the same object closer to each other than the features 
of different objects. It is trained to find the embedding such that 

  𝑆𝑊(𝑣𝑎,𝑣𝑝)  >  𝑆𝑊(𝑣𝑎 ,𝑣𝑛)                           (1) 

where S = SW is similarity which is usually defined as cosine 
measure, W is a parametrization of the embedding, features va, vp 
belong to the same object, and vn to the other one. 

The inequality (1) is quite abstract, and the following optimization 
problem is formulated to achieve it. Let us consider the 
probability of the triplet (va vp, vn): 

𝑝𝑎𝑝𝑛 =
𝑒𝑆𝑊(𝑣𝑎 ,𝑣𝑝)

𝑒𝑆𝑊(𝑣𝑎 ,𝑣𝑝) +  𝑒𝑆𝑊(𝑣𝑎 ,𝑣𝑛) 

The closer va and vp are relative to the similarity of va and vn the 
higher this probability papn is. Thus, in order to get the optimal 
parameters W, we can follow the maximum likelihood method and 
maximize this probability or its logarithm which is usually easier 
for optimization. 

𝐿𝑜𝑠𝑠 =  � −𝑙𝑜𝑔 (𝑝𝑎𝑝𝑛)
 

(𝑣𝑎,𝑣𝑝,𝑣𝑛)

→ 𝑚𝑖𝑛
𝑊

. 

However, TPE was proposed without respect to multi-view 
recognition and does not take angles under consideration. We 
propose its modification to use the information about the view 

while training and make the features of the same subject with 
different angles closer to each other. 

3.4 Cross-view modification 
We want the features of the same object captured under different 
views to be close to each other, ideally, closer than the features of 
different objects captured under the same angle. Thus, we get the 
following condition to be satisfied: 

𝑆𝑊(𝑣𝑎,𝛼,𝑣𝑎,𝛽)  >  𝑆𝑊(𝑣𝑎,𝛼,𝑣𝑛,𝛼), 

where va,α, va,β  are the features of the same object a captured 
under different views (𝛼 ≠ 𝛽), and vn,α corresponds to the other 
object captured under the same view α as va,α. 

One more difference from the initial method is that we use 
Euclidean distance instead of cosine similarity. We get 

𝑆𝑊(𝑢,𝑣)  =  −‖𝑊𝑢 −𝑊𝑣‖2, 

and likelihood maximization leads to optimization problem  

� 𝑙𝑜𝑔
𝑒−�𝑊𝑣𝑎,𝛼−𝑊𝑣𝑎,𝛽�

2

𝑒−�𝑊𝑣𝑎,𝛼−𝑊𝑣𝑎,𝛽�
2

+ 𝑒−�𝑊𝑣𝑎,𝛼−𝑊𝑣𝑛,𝛼�
2

 

(𝑣𝑎,𝛼,𝑣𝑎,𝛽,𝑣𝑛,𝛼)

→ 𝑚𝑎𝑥,
𝑊

 

that can be solved by stochastic gradient descent method. 

Constructing such an embedding, we make the representations 
less view-dependent and more id-dependent. The features of the 
same subject get closer even being obtained under different views. 

We additionally implement hard negative mining and for each 
anchor object choose the closest feature among the set of 
negatives with the same view. 

4. EVALUATION 
In this section, we describe the conducted experiments and present 
the evaluation of the proposed method.  

4.1 Dataset 
We use CASIA Gait Dataset B [21] as the benchmark since it 
contains large variability of views and it is the only multi-view 



gait dataset which is fully distributed in form of RGB videos, thus, 
any computer vision method can be applied to this data. The other 
popular multi-view gait databases, OU-ISIR collections [10], are 
available only in a silhouette form which prevents applying 
optical flow based methods to this data and, hence, evaluating the 
proposed approach. CASIA dataset contains data for 124 subjects, 
but the presence of 10 videos for each subject for each of 11 
different views makes this database large enough.  

 
Figure 2. The curve of the training loss during three steps of 

training process. 

Each video in this collection lasts 3-4 seconds and contains a walk 
of one person without any occlusions. Despite these “simple” 
conditions the small resolution (320 x 240) and view variability 
make CASIA database really challenging, and the state-of-the-art 
quality on this dataset is still far from perfect.  

4.2 Experiments and Results 
To evaluate the influence of both proposed approaches we have 
conducted separate experiments for them and then united the 
models to check if View Loss and CV TPE are interchangeable. 

To compare our results with the baseline, we use one of the 
existing protocols proposed for CASIA database: the network is 
trained on the first 24 subjects and the rest 100 are used for testing. 
While testing we fit the classifier on the first 4 videos for each 
subject and test on the others. Similarly to other classification 
problems, we measure the accuracy of algorithms, the results of 
all the experiments are presented in Table 1. 

4.2.1 View loss 
As mentioned in Section 3.2, view loss acts as a regularization to 
prevent getting into a local minimum. However, firstly the 
network has to be trained and achieve any “optimal point”. Thus, 
we have implemented the following training process: 
1. Unregularized training (until LogLoss stops decreasing); 
2. Regularized training with λ = 10-3, k = 20 (until both 

classification and view losses stop changing); 
3. Unregularized training (until LogLoss stops decreasing). 

Despite the fact, that training loss has increased after the step 2 the 
accuracy on testing part after this step is higher for many angles. 
During step 3 the loss on training set has decreased and achieved 
the smallest value, and the final accuracy on testing data is the 
highest after this step. The evaluation is made for each pair of 
gallery and probe angles, but for simplicity and convenience, we 
present the averaged results for cross-view recognition for four 
probe angles 0°, 54°, 90° and 126° (the average is calculated over 
ten angles different from the probe one). 

As we supposed, the model got into the local minimum after the 
first step of training, and the regularized training procedure has 
“pulled” the model from this local minimum and moved in the 
direction of global minimum in order to get lower loss after the 
last descent (Fig. 2). It is hardly noticeable on the graph, but 
actually, the loss after the third step is 0.18 which is 13% lower 
than 0.21 after the first step. The decrease of the training loss 
offers the hope that the quality on test set improves as well.  

4.2.2 CV TPE 
Cross-view triplet probabilistic embedding is trained separately 
from the network, based on any set of feature vectors. We have 
trained the embedding on two models: the baseline one [17] and 
view loss based, to check if both approaches worth applying or 
they are  interchangeable. We have also trained conventional  TPE 
to evaluate the influence of “cross-view” component. In all the 
cases the embedding is trained on neural features for 24 training 
subjects (the same as for network training) and then applied to the 
test set. 

 
Figure 3. Probability density curves of cross-view (solid) and 
cross-sub (dashed) distances of baseline model (red), model 
with view loss (blue) and with both view loss and CV TPE 

(green). 

Prior to measuring the recognition accuracy, we have verified if 
the features of the same subject really get closer to each other than 
the features of different subjects with the same view. We have 
calculated the cross-subject and cross-view distances between 
different video descriptors (having fixed the view or the subject, 
respectively), and estimated the probability densities in each case. 
To estimate the similarity of the distributions we calculate 
Kullback–Leibler (KL) divergence between the distributions. It 
measures difference between two distributions: the closer 
distributions are, the smaller KL value is. The density curves and 
the values of KL divergence are presented on Fig. 3. As expected, 
the green pair of distributions (corresponding to both approaches 
application) has the greatest KL value, which means that these 
two distributions are the most distant from each other. The red 
curves correspond to distributions obtained from initial model, 
they are closer to each other and have the least KL-divergence. 

Table 1 shows the comparison of all the models with state-of-the-
art approaches and demonstrates the superiority of the 
combination of proposed approaches over their separate usage. 
One can see, that View Loss increases the average accuracy by 5.4 
percentage points (from 71.6% to 77%) and additional cross view 
embedding increases the quality by another 2.4 percentage points. 
The result turns out to be 1.2 percentage points higher than the 
average accuracy of state-of-the-art approach [5]. It confirms that 
two proposed concepts are not interchangeable and complement 
each other allowing to outperform other existing methods. 

4.3 Implementation Details 
The pipeline was implemented using several public Python 
libraries: OpenCV methods were chosen for OF estimation and 
Open Pose approach [3] for pose estimation. The neural networks 
were implemented in PyTorch framework, which allowed us to 
improve the initial (step 1) quality comparing to the baseline 
model. The model has been training 4 hours on NVIDIA GTX 
1070 GPU. 

5. CONCLUSIONS 
In this study, we addressed the problem of multi-view gait 
recognition. We have presented two novel approaches that 
increase gait recognition view stability. Actually, the proposed 
view loss can be integrated into any neural architecture, and the 



embedding is applicable to any model prior to feature 
classification, thus, both concepts are model-free and can be 
applied to any neural network based model.  
The experiments show that both approaches improve the cross- 
view recognition accuracy of the baseline algorithm and their 
combination applied to the body part based model allows to 
achieve the state-of-the-art quality. 

Table 1. Comparison of cross-view recognition accuracy of 
our approach and state-of-the-art models 

 Average accuracy [%] 

Method 0° 54° 90° 126° Avg 

View loss, step 1 59.7 80.1 68.9 77.7 71.6 

View loss, step 2 53.4 79.8 70.3 81.4 71.2 

View loss, step 3 64.4 81.8 72.6 81.1 75.0 

View loss, step 3 + 
normalization 

65.9 83.6 74.6 83.7 77.0 

Part-based [17] + TPE 56.9 82.6 73.5 82.4 73.9 

Part-based [17] + CV 
TPE 

62.6 84.6 75.6 84.4 76.8 

View loss, step 3 + CV 
TPE + normalization 

69.3 86.3 75.8 86.0 79.4 

Part-based [17] - 77.8 68.8 74.7 - 

Wu [19] 54.8 77.8 64.9 76.1 68.4 

GaitSet [5] 64.6 86.5 75.5 86.0 78.2 
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